Giải bài 3.42 trang 90 SGK Toán 8 - Cùng khám phá

2024-09-14 08:35:18

Đề bài

Trong Hình 3.95, \(ABCD\) là hình chữ nhật, \(E,F,G,H\) lần lượt là các điểm nằm trên các cạnh \(AB,BC,CD,AD\) và \(BE = DG = 1cm,BF = DH = 7cm,AE = AH = CF = CG = 5cm\).

a)     Tính độ dài các cạnh của tứ giác \(EFGH\).

b)    Chứng minh rằng \(HF\) vuông góc với \(EG\).

Phương pháp giải - Xem chi tiết

Dựa vào đinh lí Pythagore để tính các cạnh.

Lời giải chi tiết

a)     Độ dài của cạnh \(HE\) là: \(HE = \sqrt {{5^2} + {5^2}}  = 5\sqrt 2 \)

Độ dài của cạnh \(EF\) là: \(EF = \sqrt {{7^2} + {1^2}}  = 5\sqrt 2 \)

Độ dài của cạnh \(FG\) là: \(FG = \sqrt {{5^2} + {5^2}}  = 5\sqrt 2 \)

Độ dài của cạnh \(GH\) là: \(GH = \sqrt {{7^2} + {1^2}}  = 5\sqrt 2 \)

b)    Tứ giác \(EFGH\) có bốn cạnh \(EF = FG = GH = HE = 5\sqrt 2 \) và không có góc vuông.

→   Tứ giác \(EFGH\) là hình thoi

Mà \(HF\) và \(EG\) là hai đường chéo của hình thoi \(EFGH\)

→   \(HF \bot EG\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"