Giải bài 4.15 trang 101 SGK Toán 8 - Cùng khám phá

2024-09-14 08:35:42

Đề bài

Thể tích của hình chóp tam giác đều sẽ thay đổi như thế nào nếu:

a) Độ dài cạnh đáy không đổi còn chiều cao tăng gấp ba lần?

b) Độ dài cạnh đáy tăng gấp hai lần còn chiều cao không đổi?

Phương pháp giải - Xem chi tiết

Dựa vào công thức tính thể tích hình chóp.

Lời giải chi tiết

Gọi a là độ dài cạnh đáy, chiều cao là h thì thể tích ban đầu của hình chóp tam giác đều là: \({V_1} = \frac{1}{3}\left( {\frac{1}{2}a.a\sqrt 2 } \right).h\)

a)      Nếu độ dài cạnh đáy không đổi còn chiều cao tăng gấp ba lần:\({V_2} = \frac{1}{3}.\left( {\frac{1}{2}.a.a\sqrt 2 } \right).3h\)

Ta thấy  \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{1}{3}.\left( {\frac{1}{2}.a.a\sqrt 2 } \right).h}}{{\frac{1}{3}.\left( {\frac{1}{2}.a.a\sqrt 2 } \right).3h}} = \frac{1}{3}\). Vậy thể tích của hình chóp tam giác sẽ tăng 3 lần sau khi tăng chiều cao 3 lần.

b)     Nếu độ dài cạnh đáy tăng gấp hai lần còn chiều cao không đổi:

\({V_3} = \frac{1}{3}\left( {\frac{1}{2}.2a.2a\sqrt 2 } \right).h\)

Ta thấy \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{1}{3}.\left( {\frac{1}{2}.a.a\sqrt 2 } \right).h}}{{\frac{1}{3}.\left( {\frac{1}{2}.2a.2a\sqrt 2 } \right).h}} = \frac{1}{4}\). Vậy thể tích của hình chóp tam giác sẽ tăng 4 lần

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"