Giải bài 6.8 trang 45 SGK Toán 8 - Cùng khám phá

2024-09-14 08:36:41

Đề bài

Cho hình thang \(ABCD\left( {AB//CD} \right)\) có \(M\) là trung điểm cạnh \(AD.\) Đường thẳng qua \(M\) song song với \(AB\) cắt \(AC\) tại \(P\) và cắt \(BC\) tại \(N.\) Chứng minh rằng:

a) \(P\) là trung điểm của \(AC\) và \(N\) là trung điểm của \(BC;\)

b) \(MN = \frac{1}{2}\left( {AB + CD} \right).\) 

Phương pháp giải - Xem chi tiết

Dựa vào tính chất hình thang để chứng minh.

Lời giải chi tiết

a) Ta có:

 \(AB//CD\)

\(\begin{array}{l}MN//AB\\ = > MN//CD\end{array}\)

Áp dụng hệ quả của tính chất đường trung bình của tam giác: Nếu một đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh còn lại:

Xét tam giác \(ACD\) , ta có:

 \(MP//CD\)

M là trung điểm AD

=> P là trung điểm cạnh AC.

Chứng minh tương tự ta có:

P là trung điểm cạnh AC

 \(NP//AB\)

=> N là trung điểm cạnh BC.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"