Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.
\(\Delta ABC;\) \(AD\) là đường phân giác của góc \(A\)\((D \in BC)\).
\( \Rightarrow \frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\).
Ví dụ:
RS là tia phân giác của góc \(\widehat {PRQ}\). Sử dụng tính chất đường phân giác, ta có:
\(\begin{array}{l}\frac{{SQ}}{{SR}} = \frac{{RQ}}{{RP}}\\ \Leftrightarrow \frac{{10}}{5} = \frac{x}{6}\\ \Leftrightarrow 2 = \frac{x}{6}\\ \Leftrightarrow x = 12\end{array}\)
Vậy độ dài đoạn thẳng RQ là 12.