Giải bài 6.28 trang 61 SGK Toán 8 - Cùng khám phá

2024-09-14 08:37:09

Đề bài

Trong Hình 6.75, \(A\)là giao điểm của \(BE\) và \(CD\).

a) Chứng minh rằng tam giác \(ABC\) đồng dạng với tam giác \(ADE\).

b) Tính độ dài \(x\) và \(y\).

 

Phương pháp giải - Xem chi tiết

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

Lời giải chi tiết

a) Xét tam giác \(ABC\) và tam giác \(ADE\), ta có:

\(\widehat B = \widehat D\) (gt)

\(\widehat {BAC} = \widehat {DAE}\) (hai góc đối đỉnh)

=> \(\Delta ABC\) ∽ \(\Delta ADE\) (g-g)

b) Ta có tỉ số đồng dạng:

\(\begin{array}{l}\frac{{AB}}{{AD}} = \frac{{AC}}{{AE}} = \frac{{BC}}{{DE}}\\ \Leftrightarrow \frac{6}{4} = \frac{x}{8} = \frac{9}{y}\\ \Rightarrow x = 12;y = 6\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"