Giải bài 4 trang 12 vở thực hành Toán 8

2024-09-14 08:38:56

Đề bài

Cho hai đa thức \(A = 2{x^2}y + 3xyz - 2x + 5\) \(B = 3xyz - 2{x^2}y + x - 4\) .

a) Tìm các đa thức \(A + B\) \(A - B\) ;

b) Tính giá trị của các đa thức A và \(A + B\) tại \(x = 0,5;y = - 2\) \(z = 1\) .

Phương pháp giải - Xem chi tiết

a) Sử dụng quy tắc cộng (trừ) hai đa thức: Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức ấy bởi dấu “+” (hay dấu “-“) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.

b) Thay các giá trị \(x = 0,5;y = - 2\) \(z = 1\) vào biểu thức để tính giá trị của đa thức A và \(A + B\) .

Lời giải chi tiết

a)

\(\begin{array}{l}A + B = \left( {2{x^2}y + 3xyz - 2x + 5} \right) + \left( {3xyz - 2{x^2}y + x - 4} \right)\\ = 2{x^2}y + 3xyz - 2x + 5 + 3xyz - 2{x^2}y + x - 4\\ = \left( {2{x^2}y - 2{x^2}y} \right) + \left( {3xyz + 3xyz} \right) + \left( { - 2x + x} \right) + \left( {5 - 4} \right)\\ = 6xyz - x + 1\end{array}\)

\(\begin{array}{l}A - B = \left( {2{x^2}y + 3xyz - 2x + 5} \right) - \left( {3xyz - 2{x^2}y + x - 4} \right)\\ = 2{x^2}y + 3xyz - 2x + 5 - 3xyz + 2{x^2}y - x + 4\\ = \left( {2{x^2}y + 2{x^2}y} \right) + \left( {3xyz - 3xyz} \right) + \left( { - 2x - x} \right) + \left( {5 + 4} \right)\\ = 4{x^2}y - 3x + 9\end{array}\)

b) Tại \(x = 0,5;y = - 2\) \(z = 1\) , ta có:

\(\begin{array}{l}A = 2.{(0,5)^2}( - 2) + 3.0,5.( - 2).1 - 2.(0,5) + 5\\ = - 1 - 3 - 1 + 5\\ = 0\end{array}\)

\(\begin{array}{l}A + B = 6.0,5.( - 2).1 - 0,5 + 1\\ = - 6 - 0,5 + 1\\ = - 5,5\end{array}\) 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"