Giải bài 7 trang 16 vở thực hành Toán 8

2024-09-14 08:38:57

Đề bài

Cho hai đa thức \(A = {x^2}{y^2} - ax{y^2} + 3{y^2} - xy + b\) \(B = c{x^2}{y^2} + 2x{y^2} - d{y^2} + 4\) , trong đó a, b, c, d là các số thực. Biết rằng \(A + B = - 2{x^2}{y^2} + 3{y^2} - xy - 1\) . Hãy tìm các số a, b, c và d.

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc cộng (trừ) đa thức: Muốn cộng (hay trừ) đa thức, ta nối các đa thức ấy bởi dấu “+” (hay dấu “-“) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.

Lời giải chi tiết

Ta có:

\(\begin{array}{*{20}{l}}{A + B = \left( {{x^2}{y^2}\; - ax{y^2}\; + 3{y^2}\; - xy + b} \right) + \left( {c{x^2}{y^2}\; + 2x{y^2}\; - d{y^2}\; + 4} \right)}\\\begin{array}{l}A + B = {x^2}{y^2}\; - ax{y^2}\; + 3{y^2}\; - xy + b + c{x^2}{y^2}\; + 2x{y^2}\; - d{y^2}\; + 4\\A + B = \left( {{x^2}{y^2} + c{x^2}{y^2}} \right) + \left( { - ax{y^2}\; + 2x{y^2}} \right) + \left( {3{y^2}\; - d{y^2}} \right) - xy + \left( {b + 4} \right)\\A + B = \left( {1 + c} \right){x^2}{y^2}\; + \left( {2 - a} \right)x{y^2}\; + \left( {3 - d} \right){y^2}\; - xy + \left( {b + 4} \right).\end{array}\end{array}\)

Theo đề bài,

\(\begin{array}{l}\left( {1 + c} \right){x^2}{y^2}\; + \left( {2 - a} \right)x{y^2}\; + \left( {3 - d} \right){y^2}\; - xy + \left( {b + 4} \right)\\ = - 2{x^2}{y^2}\; + 3{y^2}\; - xy - 1.\end{array}\)

So sánh hệ số của các hạng tử đồng dạng ở hai vế, ta có:

 \(1 + c = - 2\) (hệ số của \({x^2}{y^2}\) ), suy ra \(c = - 3;\)

 \(3 - d = 3\) (hệ số của \({y^2}\) ), suy ra \(d = 0;\)

 \(2 - a = 0\) (hệ số của \(x{y^2}\) ), suy ra \(a = 2;\)

 \(b + 4 = - 1\) (hệ số tự do), suy ra \(b = - 5\) .

Vậy đáp số của bài toán là \(a = 2,b = - 5,c = - 3\) \(d = 0\) .

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"