Giải bài 2 trang 17 vở thực hành Toán 8

2024-09-14 08:39:00

Đề bài

Tìm tích của đơn thức với đa thức:

a) \(\left( { - 0,5} \right)x{y^{2\;}}\left( {2xy-{x^2}\; + 4y} \right)\).

b) \(\left( {{x^3}y - \frac{1}{2}{x^2} + \frac{1}{3}xy} \right)6x{y^3}\).

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

Lời giải chi tiết

a)

\(\begin{array}{l}\left( { - 0,5} \right)x{y^{2\;}}\left( {2xy-{x^2}\; + 4y} \right)\\ = \left( { - 0,5} \right)x{y^{2\;}}.2xy + \left( { - 0,5} \right)x{y^{2\;}}.\left( {-{x^2}\;} \right) + \left( { - 0,5} \right)x{y^{2\;}}.4y\\ = \left( { - 0,5.2} \right).\left( {x.x} \right).\left( {{y^2}.y} \right) + \left[ {\left( { - 0,5} \right).\left( { - 1} \right)} \right].\left( {x.{x^2}} \right).{y^2} + \left( { - 0,5.4} \right).x.\left( {{y^2}.y} \right)\\ =  - {x^2}{y^3}\; + 0,5{x^3}{y^{2\;}}-\;2x{y^3}\end{array}\)

b)

 \(\begin{array}{l}\left( {{x^3}y - \frac{1}{2}{x^2} + \frac{1}{3}xy} \right)6x{y^3}\\ = {x^3}y.6x{y^3} - \frac{1}{2}{x^2}.6x{y^3} + \frac{1}{3}xy.6x{y^3}\\ = 6.\left( {{x^3}.x} \right).\left( {y.{y^3}} \right) + \left( { - \frac{1}{2}.6} \right).\left( {{x^2}.x} \right).{y^3} + \left( {\frac{1}{3}.6} \right)\left( {x.x} \right)\left( {y.{y^3}} \right)\\ = 6{x^4}{y^4} - 3{x^3}{y^3} + 2{x^2}{y^4}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"