Giải bài 4 trang 20 vở thực hành Toán 8

2024-09-14 08:39:01

Đề bài

Thực hiện phép chia \(16{x^3}{\left( {2y-5} \right)^5}\;:\left[ { - 4{x^2}{{\left( {2y-5} \right)}^3}} \right]\) .

Hướng dẫn: Đặt \(z = 2y-5\) để đưa về phép chia đơn thức cho đơn thức (với hai biến x và z).

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc chia đơn thức cho đơn thức: Muốn chia đơn thức A cho đơn thức B (trường hợp chia hết), ta làm như sau:

+ Chia hệ số của đơn thức A cho hệ số của đơn thức B;

+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B;

+ Nhân các kết quả vừa tìm được với nhau.

Lời giải chi tiết

Đặt \(z = 2y-5\) , phép chia đã cho có thể viết thành \(16{x^3}{z^5}\;:\left( { - 4{x^2}{z^3}} \right)\) .

Ta có: \(16{x^3}{z^5}\;:\left( { - 4{x^2}{z^3}} \right) = - 4x{z^2}\) .

Do đó \(16{x^3}{\left( {2y-5} \right)^5}\;:\left[ { - 4{x^2}{{\left( {2y-5} \right)}^3}} \right] = - 4x{\left( {2y-5} \right)^2}\) .

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"