Giải bài 7 trang 24 vở thực hành Toán 8

2024-09-14 08:39:06

Đề bài

Rút gọn biểu thức

\(\frac{1}{4}\left( {2{x^2} + y} \right)\left( {x - 2{y^2}} \right) + \frac{1}{4}\left( {2{x^2} - y} \right)\left( {x + 2{y^2}} \right).\)

Phương pháp giải - Xem chi tiết

Sử dụng giả thiết để viết đa thức biểu thị số tiền bà Khanh phải trà cho tổng số hộp sữa đã mua.

Lời giải chi tiết

Đặt \(P = (2{x^2} + y)(x - 2{y^2})\) và \(Q = \left( {2{x^2} - y} \right)\left( {x + 2{y^2}} \right)\) .

Khi đó biểu thức đã cho có dạng: \(\frac{1}{4}P + \frac{1}{4}Q = \frac{1}{4}(P + Q)\) .

Ta lần lượt tính P, Q và P + Q:

\(\begin{array}{l}P = \left( {2{x^2} + y} \right)\left( {x - 2{y^2}} \right) = 2{x^3} - 4{x^2}{y^2} + xy - 2{y^3}.\\Q = (2{x^2} - y)(x + 2{y^2}) = 2{x^3} + 4{x^2}{y^2} - xy - 2{y^3}.\\P + Q = 2{x^3} - 4{x^2}{y^2} + xy - 2{y^3} + 2{x^3} + 4{x^2}{y^2} - xy - 2{y^3} = 4{x^3} - 4{y^3}\end{array}\)

Vậy kết quả cuối cùng là

\(\frac{1}{4}\left( {P + Q} \right) = \frac{1}{4}\left( {4{x^3} - 4{y^3}} \right) = {x^3} - {y^3}.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"