Giải bài 10 trang 29 vở thực hành Toán 8

2024-09-14 08:39:07

Đề bài

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

\(A = {\left( {x + 2} \right)^2}\;-{\left( {x-2} \right)^2}\;-8x\).

Phương pháp giải - Xem chi tiết

- Sử dụng hằng đẳng thức bình phương của một tổng: \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

- Sử dụng hằng đẳng thức bình phương của một hiệu: \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

Lời giải chi tiết

Ta có \(A = \left( {{x^2}\; + 4x + 4} \right)-\left( {{x^2}\; - 4x{\rm{ + }}4} \right)-8x\)

\(\begin{array}{*{20}{l}}{ = {x^2}\; + 4x + 4-{x^2}\; + 4x-4-8x}\\\begin{array}{l} = \left( {{x^2}\;-{x^2}} \right) + \left( {4x + 4x-8x} \right) + \left( {4-4} \right)\\ = 0.\end{array}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"