Giải câu hỏi trắc nghiệm trang 29, 30 vở thực hành Toán 8

2024-09-14 08:39:11

Chọn phương án đúng trong mỗi câu sau:

Câu 1 trang 29

Khai triển \({\left( {2x + 1} \right)^3}\) được biểu thức:

A. \(8{x^3}\; + 12{x^2}\; + 6x + 1\).

B. \(8{x^3}\; + 6{x^2}\; + 12x + 1\).

C. \(8{x^3}\;-12{x^2}\; + 6x-1\).

D. \(8{x^3}\;-6{x^2}\; + 12x-1\).

Phương pháp giải:

Sử dụng hằng đẳng thức lập phương của một tổng: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)

Lời giải chi tiết:

Ta có \({\left( {2x + 1} \right)^3}\; = 8{x^3}\; + 12{x^2}\; + 6x + 1\).

=> Chọn đáp án A.


Câu 2 trang 30

Khai triển (2x – 1)3 được biểu thức:

A. 8x3 + 12x2 + 6x + 1.

B. 8x3 + 6x2 + 12x + 1.

C. 8x3 – 12x2 + 6x – 1.

D. 8x3 – 6x2 + 12x – 1.

Phương pháp giải:

Sử dụng hằng đẳng thức lập phương của một hiệu: \({(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)

Lời giải chi tiết:

Ta có \({\left( {2x-1} \right)^3}\; = 8{x^3}\;-12{x^2}\; + 6x-1\).

=> Chọn đáp án C.


Câu 3 trang 27

Biểu thức \({\left( {x + 2} \right)^3}\;-{\left( {x-2} \right)^3}\) được rút gọn thành

A. 16.

B. 12x2 + 16.

C. −16.

D. 24x + 16.

Phương pháp giải:

- Sử dụng hằng đẳng thức lập phương của một tổng: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)

- Sử dụng hằng đẳng thức lập phương của một hiệu: \({(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)

Lời giải chi tiết:

\(\begin{array}{*{20}{l}}{{{\left( {x + 2} \right)}^3}\;-{{\left( {x-2} \right)}^3}}\\{ = {x^3}\; + 6{x^2}\; + 12x + 8-\left( {{x^3}\;-6{x^2}\; + 12x-8} \right)}\\{ = {x^3}\; + 6{x^2}\; + 12x + 8-{x^3}\; + 6{x^2}\;-12x + 8}\\{ = \left( {{x^3}\;-{x^3}} \right) + \left( {6{x^2}\; + 6{x^2}} \right) + \left( {12x-12x} \right) + \left( {8 + 8} \right)}\\{ = 12{x^2}\; + 16.}\end{array}\)

=> Chọn đáp án B.


Câu 4 trang 27

Khẳng định nào sau đây là đúng?

A. (−A + B)2 = A2 + 2AB + B2.

B. (A + B)2 = A2 – 2AB + B2.

C. (A + B)3 = A3 + 3A2B + 3AB2 + B3.

D. (A – B)3 = A3 – 3A2B + 3AB3 + B3.

Phương pháp giải:

Dựa vào những hằng đẳng thức đáng nhớ đã học

Lời giải chi tiết:

Khẳng định đúng là: \({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^{3\;}}\) (hằng đẳng thức lập phương của một tổng).

=> Chọn đáp án C.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"