Giải câu hỏi trắc nghiệm trang 41 vở thực hành Toán 8

2024-09-14 08:39:18

Chọn phương án đúng trong mỗi câu sau:

Câu 1 trang 41

Đa thức \({x^2} - 9x + 8\) được phân tích thành tích của hai đa thức

A. x – 1 và x + 8.

B. x – 1 và x – 8.

C. x – 2 và x – 4.

D. x – 2 và x + 4.

Phương pháp giải:

Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử.

Lời giải chi tiết:

Ta có \({x^2}\;-9x + 8{\rm{  =  }}{x^2}\;-x-8x-8 = \left( {{x^2}\;-x} \right)-\left( {8x-8} \right)\)

\( = x\left( {x-1} \right)-8\left( {x-1} \right) = \left( {x-1} \right)\left( {x-8} \right).\)
=> Chọn đáp án B.


Câu 2 trang 41

Khẳng định nào sau đây là đúng?

A. \(\left( {A-B} \right)\left( {A + B} \right) = {A^2}\; + 2AB + {B^2}\).

B. \(\left( {A + B} \right)\left( {A-B} \right) = {A^2}\;-2AB + {B^2}\).

C. \(\left( {A + B} \right)\left( {A-B} \right) = {A^2}\; + {B^2}\).

D. \(\left( {A + B} \right)\left( {A-B} \right) = {A^2}\;-{B^2}\).

Phương pháp giải:

Nhớ lại 7 hằng đẳng thức đáng nhớ đã học.

Lời giải chi tiết:

Ta có \(\left( {A + B} \right)\left( {A-B} \right) = {A^2}\;-{B^2}\;\)(hằng đẳng thức hiệu hai bình phương).

=> Chọn đáp án D.


Câu 3 trang 41

Biểu thức \(25{x^2}\; + 20xy + 4{y^2}\) viết dưới dạng bình phương của một tổng là:

A. \({\left[ {5x\; + \;\left( { - 2y} \right)} \right]^2}\).

B. \({\left[ {2x\; + \;\left( { - 5y} \right)} \right]^2}\).

C. \({\left( {2x + 5y} \right)^2}\).

D. \({\left( {5x + 2y} \right)^2}\).

Phương pháp giải:

Sử dụng hằng đẳng thức bình phương của một tổng

Lời giải chi tiết:

Ta có \(25{x^2}\; + 20xy + 4{y^2}\; = {\left( {5x} \right)^2}\; + 2.5x.2y + {\left( {2y} \right)^2}\)

\( = {\left( {5x + 2y} \right)^2}.\)

=> Chọn đáp án D.


Câu 4 trang 41

Rút gọn biểu thức \(A = {\left( {2x + 1} \right)^3}\;-6x\left( {2x + 1} \right)\) ta được:

A. \({x^3}\; + \;8\).

B. \({x^3}\; + \;1\).

C. \(8{x^3}\; + \;1\).

D. \(8{x^3}\;-1\).

Phương pháp giải:

Rút gọn biểu thức bằng cách sử dụng hằng đẳng thức tổng hai lập phương.

Lời giải chi tiết:

Ta có \(A = {\left( {2x + 1} \right)^3}\;-6x\left( {2x + 1} \right)\)

\(\begin{array}{*{20}{l}}{ = {{\left( {2x} \right)}^3}\; + 3.{{\left( {2x} \right)}^2}.1 + 3.2x{{.1}^2}\; + {1^{3\;}}-12{x^2}\;-6x}\\{ = 8{x^3}\; + 12{x^2}\; + 6x + 1-12{x^2}\;-6x = 8{x^3}\; + 1.}\end{array}\)

=> Chọn đáp án C.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"