Giải bài 5 trang 45 vở thực hành Toán 8

2024-09-14 08:39:18

Đề bài

Cho tứ giác ABCD có \(\widehat A = {70^0},\widehat D = {80^0}.\)

a) Tính \(\widehat {ABC} + \widehat {BCD}\).

b) Biết các tia phân giác của các góc B và C cắt nhau tại I. Tính số đo \(\widehat {BIC}\).

 

Phương pháp giải - Xem chi tiết

a) Sử dụng định lí tổng các góc của tứ giác: Tổng các góc của một tứ giác bằng \({360^0}\).

b) Sử dụng định lí tổng các góc của tam giác: Tổng các góc của một tam giác bằng \({180^0}\).

Lời giải chi tiết

a) Vì tổng các góc của tứ giác \({\rm{ABCD}}\) bằng \({360^0}\) nên ta có:

\(\widehat {{\rm{DAB}}}{\rm{ + }}\widehat {{\rm{CDA}}}{\rm{ + }}\widehat {{\rm{ABC}}}{\rm{ + }}\widehat {{\rm{BCD}}}{\rm{ = 36}}{{\rm{0}}^{\rm{0}}}\) nên

\(\widehat {{\rm{ABC}}} + \widehat {{\rm{BCD}}} = {360^0} - \widehat {{\rm{DAB}}} - \widehat {{\rm{CDA}}} = {360^0} - {70^0} - {80^0} = {210^0}\).

b) \({\rm{BI}},{\rm{CI}}\) lần lượt là tia phân giác của góc \({\rm{ABC}}\) và góc \({\rm{BCD}}\) nên

\({\widehat {\rm{B}}_{\rm{1}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\widehat {{\rm{ABC}}}{\rm{,}}{\widehat {\rm{C}}_{\rm{1}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\widehat {{\rm{BCD}}}\)

Do đó \({\widehat {\rm{B}}_{\rm{1}}}{\rm{ + }}{\widehat {\rm{C}}_{\rm{1}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\widehat {{\rm{ABC}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}\widehat {{\rm{BCD}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{(}}\widehat {{\rm{ABC}}}{\rm{ + }}\widehat {{\rm{BCD}}}{\rm{) = 10}}{{\rm{5}}^{\rm{0}}}\).

Áp dụng định lí tổng ba góc trong tam giác BIC có:

\(\widehat {{\rm{BIC}}} + {\widehat {\rm{B}}_1} + {\widehat {\rm{C}}_1} = {180^0} \Rightarrow \widehat {{\rm{BIC}}} = {180^0} - \left( {{{\widehat {\rm{B}}}_1} + {{\widehat {\rm{C}}}_1}} \right) = {75^0}\)

Vậy \(\widehat {{\rm{BIC}}} = {75^0}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"