Giải bài 3 trang 48 vở thực hành Toán 8

2024-09-14 08:39:24

Đề bài

Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường thẳng vuông góc với BD tại D, hai đường thẳng này cắt nhau tại E. Chứng minh rằng nếu EC = ED thì hình thang ABCD là hình thang cân.

Phương pháp giải - Xem chi tiết

Chứng minh AC = AF + CF = BF + DF = BD suy ra ABCD là hình thang cân vì có hai đường chéo bằng nhau.

Lời giải chi tiết

Ta có EC = ED nên tam giác ECD cân tại E, suy ra \(\widehat {{D_2}} = \widehat {{C_2}}\) (1)

Do AC CE, BD  DE nên \(\widehat {{D_2}} = \widehat {{D_2}} = \widehat {BDE} = {90^0}\),

\(\widehat {{C_1}} + \widehat {{C_2}} = \widehat {ACE} = {90^0}\) (2)

Gọi F là giao điểm của AC và BD.

Từ (1) và (2) suy ra \(\widehat {{D_1}} = \widehat {{C_1}} \Rightarrow \Delta DCF\) cân tại F.

\( \Rightarrow DF = FC\)  (3)

Do AB // CD nên \(\widehat {{D_1}} = \widehat {{B_1}},\widehat {{C_1}} = \widehat {{A_1}}\) (hai góc so le trong).

\( \Rightarrow \widehat {{A_1}} = \widehat {{B_1}} \Rightarrow \Delta ABF\) cân tại F.

\( \Rightarrow {\rm{AF}} = BF\) (4)

Từ (3) và (4) suy ra AC = AF + CF = BF + DF = BD.

Suy ra hình thang ABCD có hai đường chéo bằng nhau nên nó là hình thang cân.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"