Đề bài
Cho hình bình hành ABCD có AB = 3 cm, AD = 5 cm.
a) Hỏi tia phân giác của góc A cắt cạnh CD hay cạnh BC?
b) Tính khoảng cách từ giao điểm đó đến điểm C.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của hình bình hành và tia phân giác của một góc.
Lời giải chi tiết
(H.3.26). a) Do ABCD là hình bình hành nên AD // BC, BC = AD = 5 cm.
Do BC = 5 cm nên có điểm E duy nhất trên cạnh BC sao cho BE = 3 cm.
Vì BE = AB ⇒ ∆BAE cân tại B \( \Rightarrow \widehat {BAE} = \widehat {BEA}.\) (1)
Do AD // BC \( \Rightarrow \widehat {BEA} = \widehat {EAD}\) (hai góc so le trong). (2)
Từ (1) và (2), ta có \(\widehat {BAE} = \widehat {EAD}\) hay tia AE là tia phân giác của góc BAD. Tia này không cắt cạnh CD.
b) Ta có EC = BC – BE = 5 – 3 = 2 (cm).