Đề bài
Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N. Chứng minh DM + BN = MN.
Phương pháp giải - Xem chi tiết
Chứng minh MD = MH, BN = HN ⇒ DM + BN = MH + HN = MN.
Lời giải chi tiết
(H.3.41). Gọi H là giao điểm của AE với MN.
Xét hai tam giác vuông ADM và AHM có: AM là cạnh chung, \(\widehat {DAM} = \widehat {HAM}.\)
⇒ ∆ADM = ∆AHM (cạnh huyền – góc nhọn)
⇒ MD = MH và AD = AH.
Xét hai tam giác vuông AHN và ABN có:
AN là cạnh chung, AH = AB (vì cùng bằng AD).
⇒ ∆AHN = ∆ABN (cạnh huyền – cạnh góc vuông) ⇒ HN = BN.
Vậy DM + BN = MH + HN = MN.