Giải bài 5 trang 80 vở thực hành Toán 8

2024-09-14 08:40:17

Đề bài

Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB, BC, AC.

a) Chứng minh rằng AE = DF.

b) Gọi I là trung điểm của DE. Chứng minh rằng ba điểm B, I, F thẳng hàng.

Phương pháp giải - Xem chi tiết

Dựa vào tính chất đường trung bình của tam giác.

Lời giải chi tiết

a) ∆ABC có: D là trung điểm AB, E là trung điểm BC, nên DE là đường trung bình của ∆ABC.

Suy ra DE // AC và DE = \(\frac{1}{2}\)AC.

Xét tứ giác ADEF: DE // AF và DE = AF nên tứ giác ADEF là hình bình hành.

Ta lại có \(\widehat {DAF} = 90^\circ \) nên tứ giác ADEF là hình chữ nhật.

Suy ra AE = DF.

b) ∆ABC có: D là trung điểm AB, F là trung điểm AC nên DF là đường trung bình của ∆ABC.

Suy ra DF // BC và DF = \(\frac{1}{2}\)BC = BE.

Xét tứ giác BDFE: DF // BE và DF = BE nên tứ giác BDFE là hình bình hành.

Suy ra hai đường chéo DE và BF cắt nhau tại trung điểm của mỗi đường.

Ta lại có I là trung điểm của DE nên I cũng là trung điểm của BF.

Vậy B, I, F thẳng hàng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"