Đề bài
Cho hai phân thức \(\frac{{{x^2} + 5{\rm{x}}}}{{(x - 10)({x^2} + 10{\rm{x}} + 25)}}\) và \(\frac{{{x^2} + 10{\rm{x}}}}{{{x^4} - 100{{\rm{x}}^2}}}\).
a) Rút gọn hai phân thức đã cho. Kí hiệu P và Q là hai phân thức nhận được.
b) Quy đồng mẫu thức hai phân thức P và Q.
Phương pháp giải - Xem chi tiết
Muốn rút gọn một phân thức ta tìm nhân tử chung của tử thức và mẫu thức rồi chia cả tử và mẫu cho nhân tử chung đó.
Lời giải chi tiết
a) Ta có: \({x^2} + 5x = x(x + 5)\) và \((x - 10)({x^2} + 10x + 25) = (x - 10){(x + 5)^2}\).
Do đó \(P = \frac{{x\left( {x + 5} \right)}}{{\left( {x - 10} \right){{\left( {x + 5} \right)}^2}}} = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\).
Ta có: \({x^2} + 10x = x(x + 10)\) và \({x^4} - 100{x^2} = {x^2}({x^2} - 100) = {x^2}(x - 10)\left( {x + 10} \right)\).
Do đó \(Q = \frac{{x(x + 10)}}{{{x^2}(x + 10)(x - 10)}} = \frac{1}{{x(x - 10)}}\).
b) \(P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\); \(Q = \frac{1}{{x\left( {x - 10} \right)}}\) có mẫu thức chung là \(x\left( {x - 10} \right)\left( {x + 5} \right)\).
Do đó \(P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{{x^2}}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\) và \(Q = \frac{1}{{x\left( {x - 10} \right)}} = \frac{{x + 5}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\).