Giải bài 4 trang 13 vở thực hành Toán 8 tập 2

2024-09-14 08:40:51

Đề bài

Cho hai phân thức \(\frac{{{x^2} + 5{\rm{x}}}}{{(x - 10)({x^2} + 10{\rm{x}} + 25)}}\)\(\frac{{{x^2} + 10{\rm{x}}}}{{{x^4} - 100{{\rm{x}}^2}}}\).

a) Rút gọn hai phân thức đã cho. Kí hiệu P và Q là hai phân thức nhận được.

b) Quy đồng mẫu thức hai phân thức P và Q.

Phương pháp giải - Xem chi tiết

Muốn rút gọn một phân thức ta tìm nhân tử chung của tử thức và mẫu thức rồi chia cả tử và mẫu cho nhân tử chung đó.

Lời giải chi tiết

a) Ta có: \({x^2} + 5x = x(x + 5)\)\((x - 10)({x^2} + 10x + 25) = (x - 10){(x + 5)^2}\).

Do đó \(P = \frac{{x\left( {x + 5} \right)}}{{\left( {x - 10} \right){{\left( {x + 5} \right)}^2}}} = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\).

Ta có: \({x^2} + 10x = x(x + 10)\)\({x^4} - 100{x^2} = {x^2}({x^2} - 100) = {x^2}(x - 10)\left( {x + 10} \right)\).

Do đó \(Q = \frac{{x(x + 10)}}{{{x^2}(x + 10)(x - 10)}} = \frac{1}{{x(x - 10)}}\).

b) \(P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}}\); \(Q = \frac{1}{{x\left( {x - 10} \right)}}\) có mẫu thức chung là \(x\left( {x - 10} \right)\left( {x + 5} \right)\).

Do đó  \(P = \frac{x}{{\left( {x - 10} \right)\left( {x + 5} \right)}} = \frac{{{x^2}}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\)\(Q = \frac{1}{{x\left( {x - 10} \right)}} = \frac{{x + 5}}{{x\left( {x - 10} \right)\left( {x + 5} \right)}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"