Giải bài 2 trang 15 vở thực hành Toán 8 tập 2

2024-09-14 08:40:55

Đề bài

Thực hiện các phép tính sau:

a) \(\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}}\);

b) \(\frac{x}{{x - y}} - \frac{y}{{x + y}}\);

c) \(\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}}\).

Phương pháp giải - Xem chi tiết

Thực hiện phép trừ phân thức cùng mẫu: trừ các tử thức cho nhau và giữ nguyên mẫu thức

Lời giải chi tiết

a) \(\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}} = \frac{{5 - 3{\rm{x}} - \left( { - 2 + 5{\rm{x}}} \right)}}{{x + 1}} = \frac{{7 - 8{\rm{x}}}}{{x + 1}}\).

b) \(\frac{x}{{x - y}} - \frac{y}{{x + y}} = \frac{{x\left( {x + y} \right) - y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + xy - xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\).

c)

 \(\begin{array}{*{20}{l}}{\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}}}\\{ = \frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}}\\{ = \frac{{3\left( {{x^2} - x + 1} \right) - 2 - 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}}\\{ = \frac{{3{{\rm{x}}^2} - 6{\rm{x}} + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}.}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"