Giải bài 5 trang 28 vở thực hành Toán 8 tập 2

2024-09-14 08:41:00

Đề bài

Cho biểu thức \(P = \frac{x}{{x - 2}} + \frac{x}{{x + 2}} + \frac{{{x^2} - 2x}}{{4 - {x^2}}}\).

a) Viết điều kiện xác định của P và rút gọn biểu thức đó.

b) Tìm các giá trị nguyên của biến để biểu thức nhận giá trị là số nguyên.

Phương pháp giải - Xem chi tiết

Tìm điều kiện xác định của P, sử dụng quy tắc cộng, trừ, nhân, chia phân thức để rút gọn.

Biến đổi P để tìm các giá trị nguyên của biến để biểu thức nhận giá trị nguyên.

Lời giải chi tiết

a) Điều kiện xác định của P là: \(x - 2 \ne 0;x + 2 \ne 0\)\(4 - {x^2} \ne 0\).

Ta có: \({x^2} - 2x = x(x - 2)\)\(4 - {x^2} = \left( {2 - x} \right)\left( {2 + x} \right)\) nên \(\frac{{{x^2} - 2x}}{{4 - {x^2}}} = \frac{{ - x}}{{x + 2}}\).

Do đó \(P = \frac{x}{{x - 2}} + \frac{x}{{x + 2}} - \frac{x}{{x + 2}} = \frac{x}{{x - 2}}\).

b) \(P = \frac{x}{{x - 2}} = \frac{{x - 2 + 2}}{{x - 2}} = 1 + \frac{2}{{x - 2}}\) nên \(\frac{2}{{x - 2}} = P - 1\).

Nếu \(x \in \mathbb{Z};P \in \mathbb{Z}\) thì x – 2 là ước số nguyên của 2, do đó

\(x - 2 \in \left\{ { - 2; - 1;1;2} \right\}\) hay \(x \in \left\{ {0;1;3;4} \right\}\), cả bốn giá trị này của biến đều thỏa mãn điều kiện xác định của P.

Vậy \(x \in \left\{ {0;1;3;4} \right\}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"