Giải bài 3 trang 26 vở thực hành Toán 8 tập 2

2024-09-14 08:41:00

Đề bài

Cho phân thức: \(P = \frac{{2{\rm{x}} + 1}}{{x + 1}}\).

a) Viết điều kiện xác định của P

b) Hãy viết P dưới dạng \(a - \frac{b}{{x + 1}}\), trong đó a, b là số nguyên dương

c) Với giá trị nào của x thì P có giá trị là số nguyên

Phương pháp giải - Xem chi tiết

Điều kiện xác định của P là \(x + 1 \ne 0\).

Ta tách: \(P = \frac{{2{\rm{x}} + 1}}{{x + 1}} = \frac{{2{\rm{x}} + 2 - 1}}{{x + 1}} = 2 - \frac{1}{{x + 1}}\) từ đó xác định được a, b.

Để P nguyên thì \(\frac{1}{{x + 1}}\) nguyên.

Lời giải chi tiết

a) Điều kiện xác định của P là \(x + 1 \ne 0\) hay \(x \ne  - 1\).

b) Ta có: \(2x + 1 = 2(x + 1) - 1\) nên \(P = \frac{{2x + 1}}{{x + 1}} = \frac{{2(x + 1) - 1}}{{x + 1}} = 2 - \frac{1}{{x + 1}}\).

c) Vì \(P = 2 - \frac{1}{{x + 1}}\) nên \(\frac{1}{{x + 1}} = 2 - P\). Nếu P và x là những số nguyên thì \(\frac{1}{{x + 1}}\) cũng là số nguyên, do đó \(x + 1 \in \left\{ { - 1;1} \right\}\). Ta lập được bảng sau:

x + 1

-1

1

x

-2

0

P

3 (tm)

1 (tm)

Vậy P có giá trị là số nguyên khi x = -2 hoặc x = 0.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"