Giải bài 2 trang 25 vở thực hành Toán 8 tập 2

2024-09-14 08:41:01

Đề bài

Rút gọn biểu thức sau:

a) \(\frac{2}{{3{\rm{x}}}} + \frac{x}{{x - 1}} + \frac{{6{{\rm{x}}^2} - 4}}{{2{\rm{x}}\left( {1 - x} \right)}}\)

b) \(\frac{{{x^3} + 1}}{{1 - {x^3}}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\)

c) \(\left( {\frac{2}{{x + 2}} - \frac{2}{{1 - x}}} \right).\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}}\)

d) \(1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right)\)

Phương pháp giải - Xem chi tiết

Thực hiện theo quy tắc cộng, trừ, nhân, chia các phân thức đại số

Lời giải chi tiết

a) \(\frac{2}{{3{\rm{x}}}} + \frac{x}{{x - 1}} + \frac{{6{x^2} - 4}}{{2x\left( {1 - x} \right)}}\)\( = \frac{2}{{3{\rm{x}}}} + \frac{{ - x}}{{1 - x}} + \frac{{3{{\rm{x}}^2} - 2}}{{x\left( {1 - x} \right)}}\)\( = \frac{{2 - 2x - 3{x^2} + 9{x^2} - 6}}{{3x\left( {1 - x} \right)}}\)

\( = \frac{{6{x^2} - 2x - 4}}{{3x\left( {1 - x} \right)}} = \frac{2({3x+1})}{3x} \)

b) \(\frac{{{x^3} + 1}}{{1 - {x^3}}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\)\( = \frac{{ - {x^3} - 1}}{{{x^3} - 1}} + \frac{x}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}\)\( = \frac{{ - {x^3} - 1 + x\left( {{x^2} + x + 1} \right) - \left( {{x^2} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{{ - {x^3} - 1 + {x^3} + {x^2} + x - {x^2} + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{x}{{{x^3} - 1}}\)

c) Ta có: \(\frac{2}{{x + 2}} - \frac{2}{{1 - x}} = \frac{{2\left( {1 - x} \right) - 2\left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {1 - x} \right)}} = \frac{{2 - 2{\rm{x}} - 2{\rm{x}} - 4}}{{\left( {x + 2} \right)\left( {1 - x} \right)}} = \frac{{ - 4x - 2}}{{\left( {x + 2} \right)\left( {1 - x} \right)}} = \frac{{2\left( {2x + 1} \right)}}{{\left( {x + 2} \right)\left( {x - 1} \right)}}\);

\(\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}} = \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}\).

Do đó

 \(\begin{array}{l}\left( {\frac{2}{{x + 2}} - \frac{2}{{1 - x}}} \right).\frac{{{x^2} - 4}}{{4{{\rm{x}}^2} - 1}} = \frac{{2\left( {2x + 1} \right)}}{{\left( {x + 2} \right)\left( {x - 1} \right)}}.\frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}\\ = \frac{{2(x - 2)}}{{\left( {2x - 1} \right)\left( {x - 1} \right)}}\end{array}\)

d) Ta có: \(\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}} = \frac{{1 + x}}{{1 - {x^2}}} - \frac{1}{{1 - {x^2}}} = \frac{x}{{1 - {x^2}}} = \frac{x}{{\left( {1 - x} \right)\left( {1 + x} \right)}}\).

Do đó \(1 + \frac{{{x^3} - x}}{{{x^2} + 1}}\left( {\frac{1}{{1 - x}} - \frac{1}{{1 - {x^2}}}} \right) = 1 + \frac{{x\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} + 1}}.\frac{x}{{\left( {1 - x} \right)\left( {1 + x} \right)}}\)

\( = 1 + \frac{{ - {x^2}}}{{{x^2} + 1}}\)\( = \frac{{{x^2} + 1 - {x^2}}}{{{x^2} + 1}}\)\( = \frac{1}{{{x^2} + 1}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"