Giải câu hỏi trắc nghiệm trang 29, 30 vở thực hành Toán 8 tập 2

2024-09-14 08:41:05

Chọn phương án đúng trong mỗi câu sau:

Câu 1 trang 29

Phương trình nào sau đây là phương trình bậc nhất một ẩn?

A. \({x^2} + 1 = 0\).

B. \(2.\frac{1}{x} + 1 = 0\).

C. \(\frac{1}{2}x - 2 = 0\).

D. \(0x + 1 = 0\).

Phương pháp giải:

Dựa vào khái niệm phương trình bậc nhất một ẩn x là phương trình có dạng ax + b = 0, với a, b là hai số đã cho và \(a \ne 0\).

Lời giải chi tiết:

\({x^2} + 1 = 0\) không phải là phương trình bậc nhất một ẩn vì bậc của x là 2.

\(2.\frac{1}{x} + 1 = 0\) không phải là phương trình bậc nhất một ẩn vì chứa ẩn x ở mẫu số.

\(0x + 1 = 0\) không phải là phương trình bậc nhất một ẩn vì hệ số a = 0.

=> Chọn đáp án C.


Câu 2 trang 29

Phương trình bào sau đây có nghiệm x = -1?

A. \(x - 1 = 0\).

B. \(2x + 1 = 3x + 4\).

C. \(x + 1 = x - 1\).

D. \(2x + 3 = 2 + x\).

Phương pháp giải:

Thay giá trị x = -1 vào các phương trình dạng A(x) = B(x), nếu A(-1) = B(-1) thì x = -1 là nghiệm của phương trình.

Lời giải chi tiết:

Thay vào lần lượt các đáp án, ta thấy chỉ có \(2.( - 1) + 3 = 2 + ( - 1) = 1\) nên x = -1 là nghiệm của phương trình \(2x + 3 = 2 + x\).

=> Chọn đáp án D.


Câu 3 trang 29

Phương trình 2x + 7 = x -2 có nghiệm là

A. x = 3.

B. x = -3.

C. x = 9.

D. x = -9.

Phương pháp giải:

Sử dụng kiến thức giải phương trình bậc nhất một ẩn để giải phương trình: Phương trình \(ax + b = 0\left( {a \ne 0} \right)\) được giải như sau:

\(ax + b = 0\)

\(ax =  - b\)

\(x = \frac{{ - b}}{a}\)

Vậy phương trình \(ax + b = 0\left( {a \ne 0} \right)\) luôn có nghiệm duy nhất \(x = \frac{{ - b}}{a}\)

Lời giải chi tiết:

\(\begin{array}{l}2x{\rm{ }} + {\rm{ }}7{\rm{ }} = {\rm{ }}x{\rm{ }} - 2\\2x - x =  - 2 - 7\\x =  - 9\end{array}\)

Vậy phương trình 2x + 7 = x -2  luôn có nghiệm duy nhất x = -9.

=> Chọn đáp án D.


Câu 4 trang 29

Phương trình 3x – (1 – 2x) = 3(x – 1) – 4 có nghiệm là

A. x = 2.

B. x = -2.

C. x = 3.

D. x = -3.

Phương pháp giải:

Sử dụng kiến thức giải phương trình bậc nhất một ẩn để giải phương trình: Phương trình \(ax + b = 0\left( {a \ne 0} \right)\) được giải như sau:

\(ax + b = 0\)

\(ax =  - b\)

\(x = \frac{{ - b}}{a}\)

Vậy phương trình \(ax + b = 0\left( {a \ne 0} \right)\) luôn có nghiệm duy nhất \(x = \frac{{ - b}}{a}\)

Lời giải chi tiết:

\(\begin{array}{l}3x{\rm{ }}--{\rm{ }}\left( {1{\rm{ }}--{\rm{ }}2x} \right){\rm{ }} = {\rm{ }}3\left( {x{\rm{ }}--{\rm{ }}1} \right){\rm{ }}--{\rm{ }}4\\3x - 1 + 2x = 3x - 3 - 4\\5x - 1 = 3x - 7\\5x - 3x =  - 7 + 1\\2x =  - 6\\x =  - 3\end{array}\)

Vậy phương trình 3x – (1 – 2x) = 3(x – 1) – 4 luôn có nghiệm duy nhất x = -3.

=> Chọn đáp án D.


Câu 5 trang 30

Phương trình \(2x - \frac{{x - 1}}{3} = \frac{{2x + 3}}{2} - 1\) có nghiệm là

A. \(x =  - \frac{1}{4}\).

B. \(x = \frac{1}{4}\).

C. \(x = \frac{5}{4}\).

D. \(x =  - \frac{5}{4}\).

Phương pháp giải:

Sử dụng kiến thức giải phương trình bậc nhất một ẩn để giải phương trình: Phương trình \(ax + b = 0\left( {a \ne 0} \right)\) được giải như sau:

\(ax + b = 0\)

\(ax =  - b\)

\(x = \frac{{ - b}}{a}\)

Vậy phương trình \(ax + b = 0\left( {a \ne 0} \right)\) luôn có nghiệm duy nhất \(x = \frac{{ - b}}{a}\)

Lời giải chi tiết:

\(\begin{array}{l}2x - \frac{{x - 1}}{3} = \frac{{2x + 3}}{2} - 1\\\frac{{6.2x - 2(x - 1)}}{6} = \frac{{3(2x + 3) - 6}}{6}\\12x - 2x + 2 = 6x + 9 - 6\\10x + 2 = 6x + 3\\10x - 6x = 3 - 2\\4x = 1\\x = \frac{1}{4}\end{array}\)

Vậy phương trình \(2x - \frac{{x - 1}}{3} = \frac{{2x + 3}}{2} - 1\) luôn có nghiệm duy nhất \(x = \frac{1}{4}\).

=> Chọn đáp án B.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"