Giải bài 8 trang 92 vở thực hành Toán 8 tập 2

2024-09-14 08:41:52

Đề bài

Cho tam giác ABC cân tại A và M là trung điểm của cạnh BC. Lấy các điểm D, E lần lượt trên các cạnh AB, AC sao cho $\widehat{DME}=\widehat{ABC}$.

a) Chứng minh $\Delta BDM\backsim \Delta CME$.

b) Chứng minh DM là phân giác của góc BDE.

Phương pháp giải - Xem chi tiết

a) Chứng minh $\Delta BDM$ và $\Delta CME$ có hai cặp góc bằng nhau nên đồng dạng.

b) Chứng minh $\Delta MDE\backsim \Delta CME$ suy ra cặp góc $\widehat{BDM}=\widehat{MDE}$.

Lời giải chi tiết

a) Xét hai tam giác BDM và CME, ta có:

\(\widehat{DBM}=\widehat{ABC}=\widehat{BCA}=\widehat{MCE}\),

$\widehat{BDM}={{180}^{0}}-\widehat{BMD}-\widehat{DBM}=\widehat{DMC}-\widehat{DME}=\widehat{EMC}$

Vậy $\Delta BDM\backsim \Delta CME$ (g.g)

b) Vì $\Delta BDM\backsim \Delta CME$ nên $\widehat{BDM}=\widehat{CME}$ và $\frac{DM}{ME}=\frac{BM}{CE}=\frac{MC}{CE}$, hay $\frac{DM}{MC}=\frac{ME}{CE}$.

Xét hai tam giác MDE và CME, ta có:

$\frac{DM}{MC}=\frac{ME}{CE}$ (theo chứng minh trên),

$\widehat{DME}=\widehat{ABC}=\widehat{BCA}=\widehat{MCE}$.

Vậy $\Delta MDE\backsim \Delta CME$ (c.g.c).

Suy ra $\widehat{MDE}=\widehat{CME}=\widehat{BDM}$, hay DM là phân giác của góc BDE.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"