Giải bài 14 trang 108 vở thực hành Toán 8 tập 2

2024-09-14 08:42:09

Đề bài

Cho tam giác nhọn ABC có các đường cao BE, CF cắt nhau tại H. Các đường thẳng qua E, F lần lượt vuông góc và cắt CH, BH tại P, Q. Chứng minh rằng PQ // BC và $\Delta HPQ\backsim \Delta HEF$.

Phương pháp giải - Xem chi tiết

Chứng minh dựa vào định lí Thales, Thales đảo và các trường hợp đồng dạng của hai tam giác.

Lời giải chi tiết

(H.9.32). Vì P // BF (cùng vuông góc với CF) nên theo định lí Thales ta có $\frac{HE}{HB}=\frac{HP}{HF}$, hay $HP=\frac{HE.HF}{HB}$.

Tương tự, vì FQ // CE (cùng vuông góc với BE) nên $\frac{HF}{HC}=\frac{HQ}{HE}$, hay $HQ=\frac{HE.HF}{HC}$. Do vậy $\frac{HP}{HQ}=\frac{HC}{HB}$.

Theo định lí Thales đảo ta suy ra PQ // BC.

Mặt khác, hai tam giác vuông BHF (vuông tại F) và CHE (vuông tại E) đồng dạng vì có một cặp góc nhọn bằng nhau là $\widehat{BHF}=\widehat{CHE}$ (hai góc đối đỉnh). Suy ra $\frac{HB}{HC}=\frac{HF}{HE}$.

Do vậy $\frac{HP}{HQ}=\frac{HC}{HB}=\frac{HE}{HF}$.

Hai tam giác HPQ và HEF có: $\frac{HP}{HQ}=\frac{HE}{HF}$ (theo chứng minh trên), $\widehat{PHQ}=\widehat{EHF}$ (hai góc đối đỉnh).

Do đó $\Delta HPQ\backsim \Delta HEF$ (c.g.c).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"