Giải bài 8 trang 105 vở thực hành Toán 8 tập 2

2024-09-14 08:42:13

Đề bài

Cho tam giác ABC vuông tại A và các điểm D, E, F như Hình 9.77 sao cho AD là phân giác của góc BAC, DE và DF lần lượt vuông góc với AC và BC . Chứng minh rằng:

a) \(\frac{B\text{D}}{BC}=\frac{AB}{AB+AC}\), từ đó suy ra \(A\text{E}=\frac{AB.AC}{AB+AC}\)

b) ΔDFC  ΔABC 

c) DF=DB

Phương pháp giải - Xem chi tiết

Sử dụng các tam giác đồng dạng để chứng minh

Lời giải chi tiết

a) Hai tam giác vuông HDA (vuông tại D) và AHC (vuông tại H) có: $\widehat{DAH}={{90}^{0}}-\widehat{ACB}=\widehat{HCA}$.

Do đó $\Delta HDA\backsim \Delta AHC$ (cặp góc nhọn).

b) Áp dụng định lí Pythagore cho tam giác ABC vuông tại đỉnh A, ta có:

$B{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}}=41$, hay $BC=\sqrt{41}$ cm.

Mặt khác, trong tam giác vuông ABC với đường cao AH, ta có:

+) $AH.BC=2{{S}_{ABC}}=AB.AC$.

Do đó $AH=\frac{AB.AC}{BC}=\frac{20}{\sqrt{41}}$ (cm).

+) $A{{B}^{2}}=BH.BC$. Do đó $BH=\frac{A{{B}^{2}}}{BC}=\frac{25}{\sqrt{41}}$ (cm).

+) $A{{C}^{2}}=CH.BC$. Do đó $CH=\frac{A{{C}^{2}}}{BC}=\frac{16}{\sqrt{41}}$ (cm).

+ $HD=\frac{BH.AC}{BC}=\frac{\frac{25}{\sqrt{41}}.4}{\sqrt{41}}=\frac{100}{41}$ (cm).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"