Đề bài
Thực hiện phép tính:
\(a){\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right)\)
\(b)\left( {2{\rm{x}} - {y^3}} \right)\left( {2{\rm{x}} + {y^3}} \right) - \left( {2{\rm{x}} - {y^2}} \right)\left( {4{{\rm{x}}^2} + 2{\rm{x}}{y^2} + {y^4}} \right)\)
Phương pháp giải - Xem chi tiết
Áp dụng các công thức nhân đa thức với đa thức và các hằng đẳng thức đã học để thực hiện phép tính
Lời giải chi tiết
a) Cách 1.
\(\begin{array}{l}{\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right)\\ = \left( {4{{\rm{x}}^2} + 4{\rm{x}}y + {y^2}} \right) + \left( {25{{\rm{x}}^2} - 10{\rm{x}}y + {y^2}} \right) + 2.\left( {10{{\rm{x}}^2} - 2{\rm{x}}y + 5{\rm{x}}y - {y^2}} \right)\\ = 4{{\rm{x}}^2} + 4{\rm{x}}y + {y^2} + 25{{\rm{x}}^2} - 10{\rm{x}}y + {y^2} + 20{{\rm{x}}^2} - 4{\rm{x}}y + 10xy - 2{y^2}\\ = \left( {4{x^2} + 25{x^2} + 20{x^2}} \right) + \left( {4xy - 10xy + 10xy - 4xy} \right) + \left( {{y^2} + {y^2} - 2{y^2}} \right)\\ = 49{{\rm{x}}^2}\end{array}\)
Cách 2. Đặt A = 2x + y và B = 5x – y, ta có:
\(\begin{array}{l}{\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right)\\ = {A^2} + {B^2} + 2AB = {\left( {A + B} \right)^2}\end{array}\).
Mặt khác, A + B = 7x. Do đó \({\left( {A + B} \right)^2} = 49{x^2}\).
Vậy \({\left( {2{\rm{x}} + y} \right)^2} + {\left( {5{\rm{x}} - y} \right)^2} + 2\left( {2{\rm{x}} + y} \right)\left( {5{\rm{x}} - y} \right) = 49{x^2}\).
b) Biểu thức đã cho có dạng M – N, trong đó:
\(M = \left( {2x - {y^3}} \right)\left( {2x + {y^3}} \right)\) và \(N = \left( {2x - {y^2}} \right)\left( {4{x^2} + 2x{y^2} + {y^4}} \right)\)
Ta có: M = 4x2 – y6
N = 8x3 – y6
Do đó M – N = -8x3 + 4x2.