Giải bài 4 trang 122 vở thực hành Toán 8 tập 2

2024-09-14 08:42:32

Đề bài

Cho phân thức \(P = \frac{{2{{\rm{x}}^3} + 6{{\rm{x}}^2}}}{{2{{\rm{x}}^3} - 18{\rm{x}}}}\)

a) Viết điều kiện xác định và rút gọn phân thức P

b) Có thể tính giá trị của P tại x = −3 được không? Vì sao

c) Tính giá trị của phân thức P tại x = 4

d) Với các giá trị nguyên nào của x thì P nhận giá trị nguyên?

Phương pháp giải - Xem chi tiết

- Điều kiện xác định của P là mẫu thức khác 0.

- Không thể tính được giá trị P tại x = -3 vì không thỏa mãn điều kiện ở câu a.

- Thay giá trị x = 4 và P để tính giá trị

- Phân tích P thành dạng a + \(\frac{k}{{x + b}}\), trong đó a, b, k là các số nguyên.

Lời giải chi tiết

a) Điều kiện xác định của phân thức là: \(2{{\rm{x}}^3} - 18 \ne 0\). (*)

Rút gọn:

 \(\begin{array}{l}P = \frac{{2{x^3} + 6{x^2}}}{{2{x^3} - 18x}} = \frac{{2{x^2}\left( {x + 3} \right)}}{{2x\left( {{x^2} - 9} \right)}}\\ = \frac{{{x^2}\left( {x + 3} \right)}}{{x\left( {{x^2} - 9} \right)}} = \frac{{{x^2}\left( {x + 3} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{x}{{x - 3}}\end{array}\)

b) Ta thấy x = -3 không thỏa mãn điều kiện (*) nên giá trị của biểu thức P tại x = -3 là không xác định.

c) Khi x = 4, điều kiện (*) được thỏa mãn nên giá trị của P tại x = 4 là xác định.

Giá trị đó là \(P = \frac{4}{{4 - 3}} = 4\).

d) Ta có thể viết \(P = \frac{x}{{x - 3}} = \frac{{x - 3 + 3}}{{x - 3}} = 1 + \frac{3}{{x - 3}}\). Điều này cho thấy P nhận giá trị nguyên khi \(\frac{3}{{x - 3}}\) nhận giá trị nguyên. Muốn vậy, x – 3 phải là ước của 3.

Mà 3 chỉ có 4 ước là \( \pm 1; \pm 3\). Do đó chỉ có thể xảy ra các trường hợp sau:

  • x – 3 = 1, tức là x = 4, khi đó P = 4;
  • x – 3 = -1, tức là x = 2, khi đó P = -2;
  • x – 3 = -3, tức là x = 0, khi đó P = 0;
  • x – 3 = 3, tức là x = 6, khi đó P = 2.

Vậy các giá trị cần tìm của x là \(x \in \left\{ {0;2;4;6} \right\}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"