Giải bài 5 trang 123 vở thực hành Toán 8 tập 2

2024-09-14 08:42:32

Đề bài

Cho biểu thức:

\(P = \left( {\frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}} \right):1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\), trong đó x và y là hai biến thỏa mãn điều kiện \({x^2}{y^2} - 1 \ne 0\)

a) Tính tổng \(A = \frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}\)\(B = 1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\)

b) Từ kết quả câu a) hãy thu gọn P và giải thích tại sao giá trị của P không phụ thuộc vào giá trị của biến y.

c) Chứng minh đẳng thức: \(P = 1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 - {x^2}}}\)

d) Sử dụng câu c) hãy tìm các giá trị của x và y sao cho P = 1

Phương pháp giải - Xem chi tiết

Rút gọn phân thức theo quy tắc rút gọn

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}A = \frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}} = \frac{{\left( {x + y} \right)\left( {1 + xy} \right) + \left( {x - y} \right)\left( {1 - xy} \right)}}{{1 - {x^2}{y^2}}}\\ = \frac{{x + {x^2}y + y + x{y^2} + x - {x^2}y - y + x{y^2}}}{{1 - {x^2}{y^2}}}\\ = \frac{{2{\rm{x}} + 2{\rm{x}}{y^2}}}{{1 - {x^2}{y^2}}} = \frac{{2x\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}\end{array}\)

\(\begin{array}{l}B = 1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\\ = \frac{{1 - {x^2}{y^2} + {x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}} = \frac{{1 + {x^2} + {y^2} + {x^2}{y^2}}}{{1 - {x^2}{y^2}}}\\ = \frac{{\left( {1 + {x^2}} \right) + {y^2}\left( {1 + {x^2}} \right)}}{{1 - {x^2}{y^2}}} = \frac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}\end{array}\)

b) Từ hai kết quả trên, ta có:

\(\begin{array}{l}P = A:B = \frac{{2x\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}:\frac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}\\ = \frac{{2x\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}.\frac{{1 - {x^2}{y^2}}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}} = \frac{{2{\rm{x}}}}{{1 + {x^2}}}\left( * \right)\end{array}\)

Trong biểu thức (*), ta thấy không xuất hiện biến y, chứng tỏ giá trị của biểu thức P nếu xác định thì nó không phụ thuộc vào biến y.

c) Ta thấy:

\(1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}} = \frac{{1 + {x^2} - \left( {1 - 2x + {x^2}} \right)}}{{1 + {x^2}}} = \frac{{1 + {x^2} - 1 + 2x - {x^2}}}{{1 + {x^2}}} = \frac{{2x}}{{1 + {x^2}}}\).

So sánh kết quả này với (*), ta suy ra P = \(1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}\)

d) Cách 1. Từ kết quả câu c, ta có: P = 1 khi \(\frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}} = 0\). Điều này xảy ra khi hai biến x và y xác định, tức là nếu x = 1 và x2y2 – 1 \( \ne \) 0. Vậy các giá trị của x và y để P = 1 là x = 1 và y2 \( \ne \) 1 (y \( \ne  \pm \)1).

Cách 2. Từ (*) ta có (với điều kiện x2y2 – 1 \( \ne \) 0): \(P = \frac{{2x}}{{1 + {x^2}}} = 1\), hay 2x = 1 + x2, tức là (x – 1)2 = 0 \( \Leftrightarrow \)x = 1.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"