Đề bài
Một hình lăng trụ đứng có đáy là một tam giác với ba cạnh 3x, 4x, và 5x ( biết rằng đó là một tam giác vuông), chiều cao của một hình lăng trụ bằng y ( \(x > 0,y > 0\)). Hãy tìm đa thức với hai biến x và y biểu thị diện tích toàn phần ( tổng diện tích xung quanh và diện tích hai đáy) của hình lăng trụ đó. Xác định bậc của đa thức tìm được.
Phương pháp giải - Xem chi tiết
Ta sử dụng công thức \({S_{tp}} = {S_{xq}} + 2{S_d}\)
Lời giải chi tiết
Diện tích toàn phần của hình lăng trụ đứng bằng \({S_{tp}} = {S_{xq}} + 2{S_d}\), trong đó \({S_{xq}}\) là diện tích xung quanh, \({S_d}\) là diện tích một mặt đáy của hình lăng trụ đứng đó. Khi đó ta có:
- Chu vi của hình lăng trụ đứng là \(3x + 4x + 5x = 12x\).
- Hình lăng trụ đứng có chiều cao là y nên diện tích xung quanh của hình lăng trụ đó là \({S_{xq}} = 12xy\) ( đơn vị diện tích).
- Đáy là tam giác vuông có cạnh lớn nhất là 5x nên hai cạnh góc vuông là 3x và 4x.
Vậy diện tích của nó bằng \({S_d} = \frac{1}{2}.3x.4x = 6{x^2}\) (đơn vị diện tích).
Do đó, biểu thức biểu thị diện tích toàn phần của hình lăng trụ đứng đó là:
\({S_{tp}} = {S_{xq}} + 2{S_d} = 12xy + 12{x^2}\) (đơn vị diện tích)
Đây là một đa thức bậc 2.