Giải bài 2.6 trang 21 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:42:54

Đề bài

a) Biết số tự nhiên a chia 3 dư 2. Chứng minh \({a^2}\) chia 3 dư 1.

b) Biết số tự nhiên a chia 5 dư 3. Chứng minh \({a^2}\) chia 5 dư 4.

Phương pháp giải - Xem chi tiết

Sử dụng hằng đẳng thức:

\({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\).

a) a chia 3 dư 2 nên \(a = 3n + 2\).

b) a chia 5 dư 3 nên \(a = 5n + 3\).

Lời giải chi tiết

a) Vì a chia 3 dư 2 nên \(a = 3n + 2\).

Ta xét

\({a^2} = {\left( {3n + 2} \right)^2} = 9{n^2} + 12n + 4 = 9{n^2} + 12n + 3 + 1 = 3\left( {3{n^2} + 4n + 1} \right) + 1\)

Vì \(3\left( {3{n^2} + 4n + 1} \right) \vdots 3\) nên \(3\left( {3{n^2} + 4n + 1} \right) + 1\) chia 3 dư 1.

Vậy \({a^2}\) chia 3 dư 1.

b) Vì a chia 5 dư 3 nên \(a = 5n + 3\).

Ta xét

\({a^2} = {\left( {5n + 3} \right)^2} = 25{n^2} + 30n + 9 = 25{n^2} + 30n + 5 + 4 = 5\left( {5{n^2} + 6n + 1} \right) + 4\)

Vì \(5\left( {5{n^2} + 6n + 1} \right) \vdots 3\) nên \(5\left( {5{n^2} + 6n + 1} \right) + 4\) chia 5 dư 4.

Vậy \({a^2}\) chia 5 dư 4.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"