Đề bài
Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của hình thang cân, tam giác cân, đường trung trực.
Lời giải chi tiết
Do ABCD là hình thang cân nên AD = BC, AC = BD, \(\widehat {ADC} = \widehat {BCD}\)
Xét \(\Delta ABC\) và \(\Delta BAD\) có
\(BC = AD,AC = BD\)
Cạnh AB chung
Do đó \(\Delta ABC = \Delta BAD\) (c.c.c)
Suy ra \(\widehat {BAC} = \widehat {ABD}\).
Từ đó \(\Delta OAB\) là tam giác cân tại O, nên \(OA = OB.\)
Ta có: \(OA + OC = AC\);\(OB + OD = BD\) , mà \(OA = OB,AC = BD\)
Suy ra \(OC = OD\)
Do đó O cách đều A và B; O cách đều C và D;
Do \(AB//CD\) nên \(\widehat {SAB} = \widehat {SDC}\); \(\widehat {SBA} = \widehat {SCD}\) (các cặp góc ở vị trí đồng vị)
Mà \(\widehat {ADC} = \widehat {BCD}\) hay \(\widehat {SDC} = \widehat {SCD}\)
suy ra \(\widehat {SAB} = \widehat {SDC} = \widehat {SBA} = \widehat {SCD}\).
Suy ra là \(\Delta SAB\), \(\Delta SCD\) các tam giác cân tại đỉnh S nên \(SA = SB,SC = SD\)
Do đó S cũng cách đều A và B, cách đều C và D.
Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.