Giải bài 3.23 trang 42 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:43:16

Đề bài

Chứng minh hình bình hành có hai đường cao xuất phát từ một đỉnh bằng nhau là một hình thoi.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về dấu hiệu nhận biết hình thoi để chứng minh: Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.

Lời giải chi tiết

Xét hình bình hành ABCD có đường cao AH (H thuộc đường thẳng CD), và đường cao AK (K thuộc đường thẳng BC) thỏa mãn \(AH = AK\)

Tam giác ACH và tam giác ACK có:

\(\widehat {AHC} = \widehat {AKC} = {90^0}\), \(AH = AK\), cạnh AC chung

Do đó, \(\Delta ACH = \Delta ACK\) (ch – cgv)

Suy ra: \(\widehat {ACK} = \widehat {ACH}\) nên CA là tia phân giác góc BCD.

Hình bình hành ABCD có CA là tia phân giác góc BCD nên ABCD là hình thoi.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"