Giải bài 3.31 trang 45 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:43:16

Đề bài

Hai cạnh kề nhau của một n – giác là hai cạnh có chung một đỉnh của n – giác đó; chúng xác định hai tia của một góc là góc tại đỉnh đó của n – giác.

Mỗi n – giác có n góc.

a) Kẻ \(n - 3\) đường chéo của n – giác cùng đi qua đỉnh \({A_0}\) thì n – giác được chia thành bao nhiêu tam giác, từ đó suy ra tổng các góc của n – giác bằng \(\left( {n - 2} \right){.180^0}\).

b) Góc kề bù với một góc tại đỉnh của n – giác gọi là một góc ngoài tại đỉnh đó của n – giác.

Với mỗi đỉnh của một n – giác, xét một góc ngoài tại đỉnh đó của n – giác thì hỏi tổng n góc ngoài đó bằng bao nhiêu?

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức tổng các góc trong tam giác để chứng minh: Tổng các góc trong một tam giác bằng \({180^0}\).

Lời giải chi tiết

a) Kẻ \(n - 3\) đường chéo đi qua một đỉnh cho trước của n – giác thì chúng chia n – giác thành \(n - 2\) tam giác.

Tổng các góc của n – giác là tổng các góc của các tam giác đó nên tổng đó bằng \(\left( {n - 2} \right){.180^0}\)

b) Nếu một góc của n – giác có số đo là \({\alpha ^0}\) thì góc ngoài tại đỉnh đó có số đo là \({180^0} - {\alpha ^0}\)

Từ đó tổng n góc ngoài có số đo là: \(n{.180^0}\)- tổng các góc của n – giác, tức là:

\(n{.180^0} - \left( {n - 2} \right){.180^0} = {2.180^0} = {360^0}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"