Giải bài 4.5 trang 48 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:43:58

Đề bài

Cho hình thang ABCD (AB//DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC, BC theo thứ tự tại M, I, N. Chứng minh rằng:

a) \(\frac{{AM}}{{MD}} = \frac{{BN}}{{NC}}\);

b) \(\frac{{AM}}{{AD}} + \frac{{CN}}{{CB}} = 1\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định lí Thalès để chứng minh: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Lời giải chi tiết

a) Tam giác ADC có MI//DC (gt) nên theo định lí Thalès ta có: \(\frac{{AM}}{{MD}} = \frac{{AI}}{{IC}}\)

Tam giác ABC có NI//AB (gt) nên theo định lí Thalès ta có: \(\frac{{NB}}{{NC}} = \frac{{AI}}{{IC}}\)

Do đó, \(\frac{{AM}}{{MD}} = \frac{{BN}}{{NC}}\)

b) Tam giác ADC có MI//DC (gt) nên theo định lí Thalès ta có: \(\frac{{AM}}{{AD}} = \frac{{AI}}{{AC}}\)

Tam giác ABC có NI//AB (gt) nên theo định lí Thalès ta có: \(\frac{{CN}}{{CB}} = \frac{{CI}}{{AC}}\)

Do đó, \(\frac{{AM}}{{AD}} + \frac{{CN}}{{CB}} = \frac{{AI}}{{AC}} + \frac{{IC}}{{AC}} = \frac{{AC}}{{AC}} = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"