Đề bài
Cho phân thức \(P = \frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ay - ax} \right)}}\left( {a \ne 0;y \ne x;y \ne - x} \right)\). Chứng minh rằng P có giá trị không phụ thuộc vào x, y.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức rút gọn phân thức để rút gọn phân thức:
+ Rút gọn phân thức là biến đổi phân thức đó thành một biểu thức mới bằng nó nhưng đơn giản hơn.
+ Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Lời giải chi tiết
Điều kiện: \(a \ne 0;y \ne x;y \ne - x\)
\(P = \frac{{{x^2} - {y^2}}}{{\left( {x + y} \right)\left( {ay - ax} \right)}} = \frac{{\left( {x - y} \right)\left( {x + y} \right)}}{{\left( {x + y} \right)a\left( {y - x} \right)}} = \frac{{ - 1}}{a}\)
Vậy P có giá trị không phụ thuộc vào x, y.