Giải bài 7.5 trang 18 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:46:53

Đề bài

Tùy theo các giá trị của m, hãy giải phương trình ẩn x sau: \(\left( {{m^2} - 1} \right)x + 1 - m = 0\)

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức giải phương trình để giải:

- Với \(a = 0,b = 0\) thì phương trình \(ax + b = 0\) có vô số nghiệm.

- Với \(a = 0,b \ne 0\) thì phương trình \(ax + b = 0\) vô nghiệm.

- Với \(a \ne 0\) thì phương trình \(ax + b = 0\) được giải như sau:

\(ax + b = 0\)

\(ax =  - b\)

\(x = \frac{{ - b}}{a}\)

Vậy phương trình \(ax + b = 0\left( {a \ne 0} \right)\) luôn có nghiệm duy nhất \(x = \frac{{ - b}}{a}\)

Lời giải chi tiết

Với \(m = 1\) ta có phương trình \(0.x + 0 = 0\) nên phương trình có nghiệm đúng với mọi x (tức là tập nghiệm là tập số thực \(\mathbb{R}\))

Với \(m =  - 1\) thì ta có phương trình \(0.x + 2 = 0\), phương trình này vô nghiệm

Với \(m \ne  \pm 1\) ta có phương trình \(\left( {{m^2} - 1} \right)x + 1 - m = 0\)

\(\left( {{m^2} - 1} \right)x = m - 1\)

\(x = \frac{{m - 1}}{{{m^2} - 1}} = \frac{{m - 1}}{{\left( {m - 1} \right)\left( {m + 1} \right)}} = \frac{1}{{m + 1}}\)

Khi \(m \ne  \pm 1\) thì phương trình \(\left( {{m^2} - 1} \right)x + 1 - m = 0\) luôn có nghiệm duy nhất \(x = \frac{1}{{m + 1}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"