Giải bài 7.46 trang 36 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:47:14

Đề bài

Cho hàm số \(y = \left( {2m - 1} \right)x + 5\left( {m \ne \frac{1}{2}} \right)\)

a) Tìm m để đồ thị hàm số song song với đường thẳng \(y =  - 3x\)

b) Vẽ đồ thị hàm số với giá trị m vừa tìm được ở câu a.

c) Tìm giao điểm A của đồ thị hàm số ở câu b và đồ thị của hàm số \(y = x + 5\). Tính diện tích của tam giác OAB, trong đó B là giao điểm của đồ thị hàm số \(y = x + 5\) với trục Ox.

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức vị trí tương đối của hai đường thẳng để tìm m:

Cho hai đường thẳng \(\left( d \right):y = ax + b\left( {a \ne 0} \right)\,\) và \(\left( {d'} \right):y = a'x + b'\left( {a' \ne 0} \right)\,\). Khi đó, d song song với d’ nếu \(a = a',b \ne b'\)

b) Sử dụng kiến thức về cách vẽ đồ thị hàm số bậc nhất \(y = ax + b\left( {a \ne 0} \right)\) để vẽ đồ thị:

+ Khi \(b = 0\) thì \(y = ax\). Đồ thị của hàm số \(y = ax\) là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm A(1; a)

+ Khi \(b \ne 0\), ta thường xác định hai điểm đặc biệt trên đồ thị là giao điểm của đồ thị với hai trục tọa độ như sau:

- Cho \(x = 0\) thì \(y = b\), ta được điểm P(0; b) thuộc trục tung Oy.

- Cho \(y = 0\) thì \(x = \frac{{ - b}}{a}\), ta được điểm \(Q\left( { - \frac{b}{a};0} \right)\) thuộc trục hoành Ox.

- Vẽ đường thẳng đi qua hai điểm P, Q ta được đồ thị của hàm số \(y = ax + b\)

c) + Tìm tọa độ giao điểm của hai đường thẳng theo các bước:

Bước 1: Xét phương trình hoành độ giao điểm của hai đường thẳng đó để tìm hoành độ giao điểm.

Bước 2: Thay hoành độ giao điểm vừa tìm được vào một trong hai hàm số ta tìm được tung độ giao điểm.

+ Tam giác OAB vuông tại O nên diện tích tam giác AOB là: \(S = \frac{1}{2}OA.OB\)

Lời giải chi tiết

a) Vì đồ thị hàm số \(y = \left( {2m - 1} \right)x + 5\) song song với đường thẳng \(y =  - 3x\) nên \(2m - 1 =  - 3\)

\(2m =  - 2\), suy ra\(m =  - 1\) (thỏa mãn)

b) Với \(m =  - 1\) ta có: \(y =  - 3x + 5\)

Đồ thị hàm số \(y =  - 3x + 5\) đi qua hai điểm \(D\left( {0;5} \right),C\left( {\frac{5}{3};0} \right)\)

 

c) Hoành độ giao điểm của hai đồ thị hàm số \(y = x + 5\) và \(y =  - 3x + 5\) là nghiệm của phương trình: \(x + 5 =  - 3x + 5\)

\(x = 0\) nên \(y = 5\)

Do đó, điểm \(A\left( {0;5} \right)\)

Vì B là giao điểm của đồ thị hàm số \(y = x + 5\) với trục Ox nên \(x + 5 = 0\), suy ra \(x =  - 5\)

Do đó, \(B\left( { - 5;0} \right)\)

Vì tam giác OAB vuông tại O nên diện tích tam giác OAB là: \(\frac{1}{2}OA.OB = \frac{1}{2}.5.\left| { - 5} \right| = \frac{{25}}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"