Giải bài 9.4 trang 52 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:47:40

Đề bài

Cho $\Delta ABC\backsim \Delta A'B'C'$, biết \(\widehat A = {60^0},\widehat {B'} = {50^0}.\) Hãy tính số đo các góc còn lại của tam giác ABC và tam giác A’B’C’.

Phương pháp giải - Xem chi tiết

* Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ:

+ Tam giác A’B’C’ được gọi là đồng dạng với tam giác ABC nếu các cạnh tương ứng tỉ lệ và các góc tương ứng bằng nhau, tức là \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}};\widehat {A'} = \widehat A,\widehat {B'} = \widehat B,\widehat {C'} = \widehat C\),

+ Tam giác A’B’C’ đồng dạng với tam giác ABC được kí hiệu là: $\Delta A'B'C'\backsim \Delta ABC$ (viết theo thứ tự cặp đỉnh tương ứng). Ở đây hai đỉnh A và A’ (B và B’, C và C’) là hai đỉnh tương ứng, các cạnh tương ứng \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}} = k\) được gọi là tỉ số đồng dạng.

* Sử dụng kiến thức về tổng các góc trong một tam giác: Trong một tam giác, tổng số đo các góc trong tam giác bằng \({180^0}\)

Lời giải chi tiết

Vì $\Delta ABC\backsim \Delta A'B'C'$ nên \(\widehat A = \widehat {A'} = {60^0},\widehat {B'} = \widehat B = {50^0},\widehat {C'} = \widehat C\)

Tam giác ABC có: \(\widehat A + \widehat B + \widehat C = {180^0}\) (tổng ba góc trong một tam giác) nên \(\widehat C = {180^0} - \widehat A - \widehat B = {70^0}\). Do đó, \(\widehat {C'} = \widehat C = {70^0}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"