Đề bài
Cho tam giác ABC có độ dài các cạnh là \(AB = 4cm,BC = 5cm,CA = 6cm.\) Tam giác MNP đồng dạng với tam giác ABC và có độ dài cạnh lớn nhất bằng 9cm. Hãy cho biết độ dài các cạnh MN, MP, NP của tam giác MNP.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định lý (trường hợp đồng dạng cạnh – cạnh – cạnh): Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.
Lời giải chi tiết
Vì tam giác MNP đồng dạng với tam giác ABC nên \(\frac{{MN}}{{AB}} = \frac{{NP}}{{BC}} = \frac{{MP}}{{AC}}\) (các cạnh tương ứng tỉ lệ)
Mà trong tam giác ABC, cạnh AC lớn nhất nên tam giác MNP cạnh lớn nhất là MP. Do đó, \(MP = 9cm\)
Ta có: \(\frac{{MN}}{{AB}} = \frac{{NP}}{{BC}} = \frac{{MP}}{{AC}} = \frac{9}{6} = \frac{3}{2}\)
Suy ra: \(MN = \frac{3}{2}AB = \frac{3}{2}.4 = 6\left( {cm} \right),NP = \frac{3}{2}BC = \frac{{15}}{2}cm\)