Đề bài
Cho tứ giác ABCD với \(AB = 2cm,AD = 3cm,BD = 4cm,BC = 6cm,CD = 8cm\). Chứng minh rằng $\Delta ABD\backsim \Delta BDC$ và AB song song với CD.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định lý (trường hợp đồng dạng cạnh – cạnh – cạnh) để chứng minh hai tam giác đồng dạng: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.
Lời giải chi tiết
Tam giác ABD và tam giác BDC có:
\(\frac{{AB}}{{BD}} = \frac{{BD}}{{DC}} = \frac{{AD}}{{BC}}\left( {do\frac{2}{4} = \frac{4}{8} = \frac{3}{6}} \right)\)
Do đó, $\Delta ABD\backsim \Delta BDC$ (c.c.c)
Suy ra: \(\widehat {ABD} = \widehat {BDC}\) (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong. Do đó, AB//CD.