Giải bài 9.52 trang 64 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:47:57

Đề bài

Cho ABC và A’B’C’ lần lượt là các tam giác vuông tại đỉnh A và A’. Gọi M, M’ lần lượt là trung điểm của AC và A’C’. Chứng minh rằng:

a) \(B{C^2} + 3B{A^2} = 4B{M^2}\) và \(B'C{'^2} + 3B'A{'^2} = 4B'M{'^2}\);

b) Nếu \(\frac{{BC}}{{BM}} = \frac{{B'C'}}{{B'M'}}\) thì $\Delta ABC\backsim \Delta A'B'C'$.

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức định lí Pythagore: Trong một tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

b) Sử dụng kiến thức về trường hợp đồng dạng của tam giác vuông để chứng minh: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

Lời giải chi tiết

a) Áp dụng định lý Pythagore cho tam giác ABC vuông tại A có: \(B{C^2} = A{B^2} + A{C^2}\)

Áp dụng định lý Pythagore cho tam giác ABM vuông tại A có: \(B{M^2} = A{B^2} + A{M^2}\)

Do đó, \(4B{M^2} = 4\left( {A{B^2} + A{M^2}} \right) = 4A{B^2} + A{C^2} = 3A{B^2} + B{C^2}\)

Áp dụng định lí Pythagore cho tam giác A’B’C’ vuông tại A’ có: \(B'C{'^2} = A'B{'^2} + A'C{'^2}\)

Áp dụng định lí Pythagore cho tam giác A’B’M’ vuông tại A’: \(B'M{'^2} = A'B{'^2} + A'M{'^2}\)

Do đó, \(4B'M{'^2} = 4\left( {A'B{'^2} + A'M{'^2}} \right) = 4A'B{'^2} + A'C{'^2} = 3A'B{'^2} + B'C{'^2}\)

b) Giả sử \(\frac{{BC}}{{BM}} = \frac{{B'C'}}{{B'M'}}\). Theo phần a ta có: \(\frac{{B{C^2}}}{{B{M^2}}} + 3\frac{{B{A^2}}}{{B{M^2}}} = 4 = \frac{{B'C{'^2}}}{{B'M{'^2}}} + 3\frac{{B'A{'^2}}}{{B'M{'^2}}}\)

Suy ra: \(\frac{{B{A^2}}}{{B{M^2}}} = \frac{{B'A{'^2}}}{{B'M{'^2}}}\;hay\;\frac{{BA}}{{BM}} = \frac{{B'A'}}{{B'M'}}\)

Do đó, \(\frac{{BC}}{{B'C'}} = \frac{{BM}}{{B'M'}} = \frac{{BA}}{{B'A'}}\)

Lại có: \(\widehat {BAC} = \widehat {B'A'C'} = {90^0}\) nên $\Delta ABC\backsim \Delta A'B'C'\left( ch-cgv \right)$

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"