Giải bài 9.63 trang 68 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:48:11

Đề bài

Cho tam giác ABC có \(AB = \sqrt {15} cm\) và \(AC = 2BC.\) Tìm độ dài hai cạnh AC, BC sao cho ABC là một tam giác vuông.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức định lí Pythagore để tìm AC, BC: Trong một tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

Lời giải chi tiết

Vì \(AC = 2BC > BC\) nên tam giác ABC không thể vuông tại A.

+ Trường hợp 1: Tam giác ABC vuông tại B:

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B ta có: \(A{B^2} + B{C^2} = A{C^2}\)

\({\left( {\sqrt {15} } \right)^2} + B{C^2} = 4B{C^2}\)

\(3B{C^2} = 15\), suy ra \(B{C^2} = 5\), nên \(BC = \sqrt 5 cm\), do đó \(AC = 2\sqrt 5 cm\)

+ Trường hợp 2: Tam giác ABC vuông tại C:

Áp dụng định lí Pythagore vào tam giác ABC vuông tại C ta có: \(A{C^2} + B{C^2} = A{B^2}\)

\({\left( {2BC} \right)^2} + B{C^2} = {\left( {\sqrt {15} } \right)^2}\)

\(5B{C^2} = 15\), suy ra \(B{C^2} = 3\) nên \(BC = \sqrt 3 cm\), do đó \(AC = 2\sqrt 3 cm\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"