Giải bài 10.18 trang 80 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:48:21

Đề bài

Cho hình chóp tứ giác đều S.ABCD có thể tích bằng \(144c{m^3}\). Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA (H.10.21)

Tính thể tích của hình chóp S.MNPQ.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về thể tích của hình chóp tứ giác đều: Thể tích của hình chóp tam giác đều bằng \(\frac{1}{3}\) tích của diện tích đáy với chiều cao của nó.

Lời giải chi tiết

Gọi O là giao điểm của AC và BD.

MN là đường trung bình của tam giác ABC nên \(MN = \frac{1}{2}AC\)

MQ là đường trung bình của tam giác ABD nên \(MQ = \frac{1}{2}BD\)

Diện tích hình vuông MNPQ là:

\({S_{MNPQ}} = \frac{1}{2}MN.MQ = \frac{1}{2}.AC.\frac{1}{2}BD = \frac{1}{2}\left( {\frac{1}{2}AC.BD} \right) = \frac{1}{2}{S_{ABCD}}\)

Hai hình chóp S.ABCD và S.MNPQ có chung chiều cao SO và \({S_{MNPQ}} = \frac{1}{2}{S_{ABCD}}\) nên \({V_{S.MNPQ}} = \frac{1}{2}{V_{S.ABCD}} = \frac{1}{2}.144 = 72\left( {c{m^3}} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"