Giải bài 3 trang 19 sách bài tập toán 8 - Chân trời sáng tạo

2024-09-14 08:49:51

Đề bài

Chứng minh rằng mỗi cặp phân thức sau bằng nhau.

a) \(\frac{{6a{b^2}}}{{9{a^3}b}}\) và \(\frac{{2b}}{{3{a^2}}}\);

b) \(\frac{{2y - 2x}}{{{{\left( {x - y} \right)}^2}}}\) và \(\frac{2}{{y - x}}\);

c) \(\frac{{{a^2} + ab}}{{2{b^2} + 2ab}}\) và \(\frac{{2ab}}{{4{b^2}}}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về hai phân thức bằng nhau để chứng minh: Hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) bằng nhau, viết \(\frac{A}{B} = \frac{C}{D}\), nếu \(A.D = B.C\)

Lời giải chi tiết

a) Ta có: \(6a{b^2}.3{a^2} = 9{a^3}b.2b\left( { = 18{a^3}{b^2}} \right)\)  nên \(\frac{{6a{b^2}}}{{9{a^3}b}} = \frac{{2b}}{{3{a^2}}}\)

b) Vì \(\left( {2y - 2x} \right)\left( {y - x} \right) = 2\left( {y - x} \right)\left( {y - x} \right) = 2{\left( {x - y} \right)^2}\) nên \(\frac{{2y - 2x}}{{{{\left( {x - y} \right)}^2}}} = \frac{2}{{y - x}}\)

c) Vì \(4{b^2}\left( {{a^2} + ab} \right) = 4{a^2}{b^2} + 4a{b^3};2ab\left( {2{b^2} + 2ab} \right) = 4{a^2}{b^2} + 4a{b^3}\) nên \(4{b^2}\left( {{a^2} + ab} \right) = 2ab\left( {2{b^2} + 2ab} \right)\). Do đó, \(\frac{{{a^2} + ab}}{{2{b^2} + 2ab}} = \frac{{2ab}}{{4{b^2}}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"