Giải bài 7 trang 25 sách bài tập toán 8 - Chân trời sáng tạo

2024-09-14 08:49:54

Đề bài

Thu gọn các biểu thức sau:

a) \(\frac{{16 - {a^2}}}{{{a^2} + 8a + 16}}:\frac{{a - 4}}{{2a + 4}}.\frac{{a + 4}}{{a + 2}}\);

b) \(\frac{{{a^2} - ab + {b^2}}}{{{b^2} - {a^2}}}.\frac{{a + b}}{{{a^3} + {b^3}}}:\frac{{a + b}}{{a - b}}\);

c) \(\left( {\frac{{2a}}{{a - 2}} - \frac{a}{{a + 2}}} \right).\frac{{{a^2} - 4}}{a}\);

d) \(\left( {\frac{1}{{{a^2}}} - \frac{1}{{ab}}} \right).\frac{{a{b^2}}}{{a - b}}\).

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức nhân hai phân thức để tính: Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau: \(\frac{A}{B}.\frac{C}{D} = \frac{{A.C}}{{B.D}}\)

+ Sử dụng kiến thức chia hai phân thức để tính: Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\) (C khác đa thức không), ta nhân phân thức \(\frac{A}{B}\) với phân thức \(\frac{D}{C}\): \(\frac{A}{B}:\frac{C}{D} = \frac{A}{B}.\frac{D}{C}\)

Lời giải chi tiết

a) \(\frac{{16 - {a^2}}}{{{a^2} + 8a + 16}}:\frac{{a - 4}}{{2a + 4}}.\frac{{a + 4}}{{a + 2}} = \frac{{\left( {4 - a} \right)\left( {a + 4} \right)}}{{{{\left( {a + 4} \right)}^2}}}.\frac{{a + 4}}{{a + 2}}:\frac{{a - 4}}{{2a + 4}}\)

\( = \frac{{\left( {4 - a} \right)\left( {4 + a} \right)\left( {a + 4} \right)}}{{{{\left( {a + 4} \right)}^2}.\left( {a + 2} \right)}}.\frac{{2\left( {a + 2} \right)}}{{a - 4}} = \frac{{\left( {4 - a} \right)2\left( {a + 2} \right)}}{{\left( {a + 2} \right)\left( {a - 4} \right)}} =  - 2\)

b) \(\frac{{{a^2} - ab + {b^2}}}{{{b^2} - {a^2}}}.\frac{{a + b}}{{{a^3} + {b^3}}}:\frac{{a + b}}{{a - b}} = \frac{{{a^2} - ab + {b^2}}}{{\left( {b - a} \right)\left( {b + a} \right)}}.\frac{{a + b}}{{\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)}}.\frac{{a - b}}{{a + b}}\)

\( = \frac{{\left( {{a^2} - ab + {b^2}} \right)\left( {a - b} \right)}}{{\left( {b - a} \right)\left( {b + a} \right)\left( {{a^2} - ab + {b^2}} \right)\left( {a + b} \right)}} = \frac{{ - 1}}{{{{\left( {b + a} \right)}^2}}}\)

c) \(\left( {\frac{{2a}}{{a - 2}} - \frac{a}{{a + 2}}} \right).\frac{{{a^2} - 4}}{a} = \left[ {\frac{{2a\left( {a + 2} \right)}}{{\left( {a - 2} \right)\left( {a + 2} \right)}} - \frac{{a\left( {a - 2} \right)}}{{\left( {a - 2} \right)\left( {a + 2} \right)}}} \right].\frac{{\left( {a - 2} \right)\left( {a + 2} \right)}}{a}\)

\( = \frac{{2{a^2} + 4a - {a^2} + 2a}}{{\left( {a - 2} \right)\left( {a + 2} \right)}}.\frac{{\left( {a - 2} \right)\left( {a + 2} \right)}}{a} = \frac{{{a^2} + 6a}}{a} = \frac{{a\left( {a + 6} \right)}}{a} = a + 6\)

d) \(\left( {\frac{1}{{{a^2}}} - \frac{1}{{ab}}} \right).\frac{{a{b^2}}}{{a - b}} = \frac{{b - a}}{{{a^2}b}}.\frac{{a{b^2}}}{{a - b}} = \frac{{ - \left( {a - b} \right)a{b^2}}}{{{a^2}b\left( {a - b} \right)}} = \frac{{ - b}}{a}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"