Giải bài 4 trang 60 sách bài tập toán 8 - Chân trời sáng tạo

2024-09-14 08:52:44

Đề bài

Hình thang ABCD (AB//CD) có \(\widehat {ACD} = \widehat {BDC}\). Chứng minh tứ giác ABCD là hình thang cân.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về dấu hiệu nhận biết hình thang cân để chứng minh: Hình thang có hai đường chéo bằng nhau là hình thang cân.

Lời giải chi tiết

Gọi E là giao điểm của AC và BD.

Tam giác EDC có: \(\widehat {{C_1}} = \widehat {{D_1}}\) nên tam giác EDC cân tại E. Do đó, \(EC = DE\) (1)

Vì AB//CD nên \(\widehat {{D_1}} = \widehat {EBA};\widehat {{C_1}} = \widehat {EAB}\)

Mà \(\widehat {{C_1}} = \widehat {{D_1}}\) nên \(\widehat {EAB} = \widehat {ABE}\)

Do đó, tam giác ABE cân tại E. Do đó: \(EA = EB\) (2)

Từ (1) và (2) ta có: \(EC + AE = DE + EB\)

Suy ra: \(AC = BD\)

Hình thang ABCD có: \(AC = BD\) nên tứ giác ABCD là hình thang cân.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"