Giải bài 4 trang 65 sách bài tập toán 8 - Chân trời sáng tạo

2024-09-14 08:52:49

Đề bài

Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm M và N sao cho \(BM = DN = \frac{1}{3}BD\).

a) Chứng minh \(\Delta AMB = \Delta CND\).

b) Chứng minh rằng tứ giác AMCN là hình bình hành.

c) Gọi O là giao điểm của AC và BD, I là giao điểm của AM và BC. Chứng minh rằng \(AM = 2MI\).

d) Gọi K là giao điểm của CN và AD. Chứng minh I và K đối xứng với nhau qua O.

Phương pháp giải - Xem chi tiết

a, c, d) Sử dụng kiến thức về tính chất hình bình hành để chứng minh: Hình bình hành có

+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

+ Hai cạnh đối song song và bằng nhau.

b) Sử dụng kiến thức về dấu hiệu nhận biết hình bình hành để chứng minh: Tứ giác có các cặp cạnh đối bằng nhau là hình bình hành.

Lời giải chi tiết

a) Vì ABCD là hình bình hành nên \(AB = CD\), AB//CD. Do đó, \(\widehat {MBA} = \widehat {NDC}\) (hai góc so le trong)

Tam giác AMB và tam giác CND có:

\(AB = CD\)(cmt), \(\widehat {MBA} = \widehat {NDC}\) (cmt), \(BM = DN\) (gt)

Do đó, \(\Delta AMB = \Delta CND\left( {c - g - c} \right)\)

b) Vì \(\Delta AMB = \Delta CND\) (cmt) nên \(AM = CN\)

Tam giác ABN và tam giác CDM có:

\(AB = CD\)(cmt), \(\widehat {ABN} = \widehat {MDC}\), \(BN = DM\left( { = \frac{2}{3}BD} \right)\)

Suy ra: \(\Delta ABN = \Delta CDM\left( {c - g - c} \right)\) nên \(AN = MC\)

Tứ giác AMCN có: \(AN = MC\) (cmt), \(AM = CN\) (cmt) nên tứ giác AMCN là hình bình hành.

c) Vì tứ giác AMCN là hình bình hành nên \(OA = OC\).

Tam giác ABC có: \(OA = OC\), suy ra BO là đường trung tuyến của tam giác ABC.

Lại có: \(BM = \frac{1}{3}BD,\;BO = \frac{1}{2}BD\), suy ra \(BM = \frac{2}{3}BO\) do đó M là trọng tâm của tam giác ABC. Khi đó, \(AM = \frac{2}{3}AI,MI = \frac{1}{3}AI\). Vậy \(AM = 2MI\)

d) Vì AMCN là hình bình hành nên AM//CN. Mà \(M \in AI,N \in CK\) suy ra AI//CK (1)

mà AD//BC (do ABCD là hình bình hành) và \(K \in AD,I \in BC\) nên AK//CI (2)

Từ (1) và (2) suy ra AKCI là hình bình hành. Mà O là trung điểm của AC, suy ra O là trung điểm của KI hay I đối xứng với K qua O.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"