Giải bài 19 trang 74 sách bài tập toán 8 - Chân trời sáng tạo

2024-09-14 08:52:56

Đề bài

Cho hình bình hành ABCD. Gọi DE, BK lần lượt là đường phân giác của hai góc \(\widehat {ADB},\widehat {DBC}\left( {E \in AB,K \in CD} \right)\)

a) Chứng minh DE//BK.

b) Giả sử \(DE \bot AB\). Chứng minh \(DA = DB\).

c) Trong trường hợp \(DE \bot AB\), tìm số đo của \(\widehat {ADB}\) để tứ giác DEBK là hình vuông.

Phương pháp giải - Xem chi tiết

Cho hình bình hành ABCD. Gọi DE, BK lần lượt là đường phân giác của hai góc \(\widehat {ADB},\widehat {DBC}\left( {E \in AB,K \in CD} \right)\)

a) Chứng minh DE//BK.

b) Giả sử \(DE \bot AB\). Chứng minh \(DA = DB\).

c) Trong trường hợp \(DE \bot AB\), tìm số đo của \(\widehat {ADB}\) để tứ giác DEBK là hình vuông.

Lời giải chi tiết

a) Vì ABCD là hình bình hành nên AD//BC. Suy ra \(\widehat {ADB} = \widehat {DBC}\) (hai góc so le trong)

Do đó: \(\frac{{\widehat {ADB}}}{2} = \frac{{\widehat {DBC}}}{2}\), suy ra \(\widehat {EDB} = \widehat {KBD}\)

Mà hai góc này ở vị trí so le trong nên DE//BK.

b) Tam giác DAB có DE vừa là đường cao đồng thời là phân giác nên tam giác DAB cân tại D. Do đó, \(DA = DB\)

c) Tứ giác DEBK có: DE//BK, EB//DK nên tứ giác DEBK là hình bình hành. Mà \(\widehat {DEB} = {90^0}\) nên DEBK là hình chữ nhật.

Để hình chữ nhật DEBK là hình vuông thì \(DE = EB\)

Mà tam giác DAB cân tại D nên DE là trung tuyến của tam giác DAB.

Suy ra: \(DE = EB = AE = \frac{{AB}}{2}\), do đó tam giác DAB vuông tại D hay \(\widehat {ADB} = {90^0}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"